

YTECHNIQUE DE TOULOUSE - INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE - LABORATOIRE D'ANALYSE ET D'ARCHITECTURE DES SYSTEMES - UNIVERSITE PA ATELIER INTERUNIVERSITAIRE DE MICRO-NANO-ÉLECTRONIQUE Pôle CNFM de TOULOUSE

NMOS FABRICATION PROCESS

Table of contents

EVACUA	ATION INSTRUCTIONS FOR TEACHERS	Erreur ! Signet non défini.
SECURI	TY INSTRUCTIONS	Erreur ! Signet non défini.
HANDLI	NG INSTRUCTIONS	5
CLEANR	OOM ENTRY PROCEDURE	Erreur ! Signet non défini.
PROCES	S SHEET : TRANSISTOR WITH POLYSILICON GATE	Erreur ! Signet non défini.
I-	SUBSTRATE CHARACTERIZATION	7
11-	MASKING OXIDE	7
111-	PHOTOLITHOGRAPHY n° 1 : "OPENING TRANSISTORS"	
IV-	ORGANIC DECONTAMINATION	9
V-	R.C.A. CLEANING	9
VI-	GATE OXIDATION	
VII-	POLYSILICON DEPOSIT	
VIII-	PHOTOLITHOGRAPHY n° 2: " POLYSILICON ETCHING"	
IX-	ORGANIC DECONTAMINATION	
X-	SOURCE AND DRAIN DIFFUSION (N type)	
XI-	SiO2 L.T.O (Low Temperature Oxide) DEPOSIT	
XII-	PHOTOLITHOGRAPHY n° 3 : " CONTACTS OPENING"	
XIII-	METALLIZATION	15
XIV-	PHOTOLITHOGRAPHY n° 4 : " METAL ETCHING"	15
XV-	METAL ANNEALING	
XVI-	WAFER TESTING	
XVII-	ASSEMBLY	
XVIII-	ELECTRICAL CHARACTERIZATION	
XIX-	OPERATIONS ON TEST-WAFERS	
XX-	CHARACTERIZATIONS	21
XXI-	MESURE DES PROFONDEURS DE JONCTIONS	23
XXII-	4 PROBES RESISTIVITY MEASUREMENTS	24
XXIII-	SIDE VIEW OF PROCESS STEPS	
XXIV-	DTC4R MASKS LEVEL	27
XXV-	ELECTRICAL TESTS FORM	

EVACUATION INSTRUCTIONS FOR TEACHERS

REMINDER : Each teacher is responsible for the orderly and calm evacuation of all students under his care at the time of the incident.

IN THE MAIN CLEAN ROOM:

- \Rightarrow Evacuate the students by the emergency exit which leads directly into the hall.
- \Rightarrow Do not go through the airlock again; do not undress.
- \Rightarrow Exit through the main entrance of AIME.

IN THE PHOTOLITHOGRAPHY ROOM:

- \Rightarrow Evacuate the students by the emergency exit which leads directly into the corridor.
- \Rightarrow Do not go through the airlock again; do not undress.
- \Rightarrow Exit through the main entrance of AIME.

IN ASSEMBLY OR CHARACTERIZATION ROOMS:

- \Rightarrow Evacuate the students through the emergency exit leading to the green space behind the AIME.
- \Rightarrow Do not go through the airlock again; do not undress.
- \Rightarrow Take a tour of AIME.

GATHER ALL STUDENTS AT THE GATHERING POINT IN FRONT OF AIME.

TAKE A CENSUS.

DO NOT REINSTATE THE PREMISES WITHOUT THE ADVICE OF THE PERSONNEL IN CHARGE OF EVACUATION

SECURITY INSTRUCTIONS

LOCATE THE SAFETY EQUIPMENT:

- emergency exits
- security showers
- fire extinguishers
- self-contained breathing equipment

WEAR PROTECTIVE GLASSES IS MANDATORY FOR:

- CHEMICAL CLEANING (RCA AND H₂SO₄-H₂O₂)

- ALL WET ATTACKS

TRAINEES ARE **FORBIDDEN** TO TRANSPORT CHEMICALS FROM ONE WORKSTATION TO ANOTHER.

Keep in mind that:

- gloves are compulsory but they do not provide sufficient protection against high temperatures or corrosive products,
- some baths give off noxious vapors, normally drawn in by laminar flow hoods,
- overshoes sometimes make the floor very slippery.

HANDLING INSTRUCTIONS

- Throughout the duration of the process, the quality control of each step must be a permanent concern if we want to achieve a final component in working order, as well as a good performance on the whole. For this purpose, we will use in parallel with the "components" wafer, a control/test wafer ("witness") which will characterize each step carried out.
- Warning: the wafers boxes must be opened by turning the cover clockwise
- For handling a wafer with a tweezer :

- take advantage of the flat if the wafer is in the box

- pinch at least 5mm from the edge of the wafer to reduce the risk of breakage. Any wafer coming out of a wet treatment must at the end undergo a rinsing with D.I. water and mechanical drying before being stored in its box.

- A good rinsing must include a change of tweezer, it is necessary to have a second one available and clean all tweezers.
- The tips of the pliers must not be wiped (neither on the gown, nor on paper), they must be rinsed with water and dried with nitrogen.
- The function of the gloves is to protect the components from contamination. Contamination of gloves should also be avoided. They are absolutely not an effective protection against acids.
- The plastic of the boxes cannot withstand temperatures above 250 ° C. In particular, cool down the wafers coming out from oven, for about 20 seconds in the open air.
- Paper is a source of contamination, make minimal use of it.

CLEANROOM ENTRY PROCEDURE

- Leave street clothes and bags in the seminar room.
- Six lockers, lockable, can be used in the SAS for valuables.
- No more than 4 people in the airlock at the same time

Clean room entry:

<u>Lab coat</u> :	white : blue: green:	permanent staff trainees visitors
Overshoes:	place the sear Do not put yo	n inside. our foot in the clean part until you have put on your overshoes.
Mob caps:	Provision in t	he wall dispenser.
Gloves:	Provision in t	he wall dispenser. 2 sizes available.

Exit of clean room:

<u>Lab coat/mob caps/goggles</u>: place them in your personal box <u>Overshoes/gloves</u>: throw them in dedicated trashes.

Recommendations:

- Be careful not to enter the airlock with muddy or wet dress shoes (use the doormat at the entrance of the AIME).

- Limit the number of objects and documents entering the Clean Room (carbon pencil prohibited).

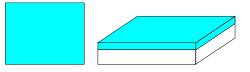
PROCESS SHEET: TRANSISTOR WITH POLYSILICON GATE

I- SUBSTRATE CHARACTERIZATION

COMPONENTS WAFERS n° ... :

MATERIAL: Si P type, orientation : (100)

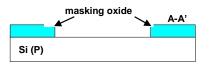
\bigcirc wafer thickness measurement	$e_s =$	μm
\bigcirc 4 probes measurement	V/I =	Ω
\bigcirc sheet resistance calculation	R =	$\Omega/_{\Box}$
\bigcirc resistivity calculation	$\rho_s =$	Ω.cm.
\bigcirc doping concentration calculation	N _A =	at.cm ⁻³

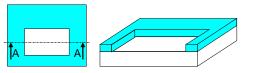

II- MASKING OXIDE

<u>1- Cleaning before Oxidation:</u>

Operations	Conditions
$\subset 1^{\circ}$) Degreasing	Acetone
$\bigcirc 2^{\circ}$) Rinsing	DI water
\bigcirc 3°) Chemical Oxidation	$H_2SO_4 + H_2O_2(1/1) - 2 min$
$\bigcirc 4^{\circ}$) Rinsing	DI water
$\subset 5^{\circ}$) SiO ₂ etching	BOE HF - 30 s
$\subset \supset 6^{\circ}$) Rinsing	DI water
\bigcirc 7°) Drying	Spin dryer
$\bigcirc 8^{\circ}$) Washing - Drying	Washer dryer

<u>2- Wet thermal Oxidation:</u> This operation is performed inside oven N° 2-2


masking oxide	
Si (P)	
masking oxyde	



		Conditions		
\bigcirc process also test-wafer 1 and 2				
Temperature	Duration	Flow rates		
\bigcirc from 800°C to 1100°C	25 min	$N_2 = 1 l/min$		
⊂⊃ 1100°C	35 min	$H_2 = 2,3 l/min - O_2 = 1,5 l/min$		
⊂⊃ 1100°C	30 min	$O_2 = 2,2 $ l/min		
⊂⊃ 1100°C	5 min	Ar = 1,5 l/min		
\Box from 1100°C to 800°C	60 min	$N_2 = 1 l/min$		

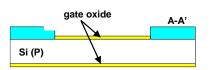
III- PHOTOLITHOGRAPHY n° 1: "TRANSISTOR OPENING"

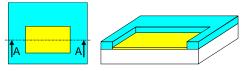
This step provides the channel width « \mathbf{W} » of the transistor.

Supervisor's visa for the continuation of Operations		
Operations Conditions		
\bigcirc 1°) Drying	Hot plate 120°C – 2 min	
⊂⊃ 2°) HMDS Deposit (Adhesion promoter)	Spin coater 4000 rpm - 30 s	
\bigcirc 3°) Positive photoresist deposit	Resist Shipley S1813 Spin coater 4000 rpm - 30 s	
$\subset 4^{\circ}$) 1st annealing	Hot plate $100^{\circ}C - 60 s$	
\bigcirc 5°) Alignment - Insolation	Mask $n^{\circ}1 - 5$ s	
$\subset 5^{\circ}$) Development	Bath at 20 °C - 25 s	
$\bigcirc 7^{\circ}$) Rinsing	DI water	
$\bigcirc 8^{\circ}$) Drying	Spin dryer	
$\bigcirc 9^{\circ}$) Observation	Optical microscope	
\bigcirc 10°) 2nd annealing	Hot plate 120° C - 45 s	
⊂⊃ Process test wafer 1	Operation n°1 (§ XIX)	
$\subset 11^{\circ}$) SiO ₂ etching	BOE HF : time duration given by test-wafer1	
\bigcirc 12°) Rinsing	DI water	
\bigcirc 13°) Drying	Spin dryer	
\bigcirc 14°) Observation	Optical microscope	
$\subset 15^{\circ}$) Resist dissolution	Acetone	

\bigcirc 16°) Rinsing	DI water
$\subset 17^{\circ}$) Drying	Spin dryer

IV- ORGANIC DECONTAMINATION

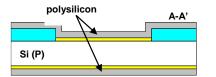

Operations	Conditions
$\subset 1^{\circ}$) Cleaning	$H_2SO_4 + H_2O_2 - 2 min$
$\bigcirc 2^{\circ}$) Rinsing	DI water
$\bigcirc 3^{\circ}$) Drying	Spin dryer

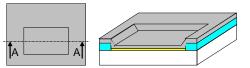

V- CLEANING R.C.A.

This operation aims to prepare the Si - SiO₂ interface before growing the gate oxide, following 5 steps (A' -A - A' - B - C):

Conditions		
\bigcirc clean at the same time test-wafer 1, <u>but not test-wafer 2</u>		
Operations Conditions		
$\subset 1^{\circ}$) Bath A'	Dilute HF – 30 s	
$\bigcirc 2^{\circ}$) Rinsing	DI water – 3 min minimum	
$\subset 3^{\circ}$) Drying	Spin dryer	
$\bigcirc 4^{\circ}$) Bath A	HNO ₃ boiling – 10 min	
$\subset 5^{\circ}$) Rinsing	DI water – 3 min minimum	
$\subset \supset 6^{\circ}$) Bath A'	Dilute HF – 30 s	
\bigcirc 7°) Rinsing	DI water – 3 min minimum	
$\subset > 8^{\circ}$) Bath B	$NH_4OH + H_2O_2 + H_2O$ boiling - 10 min	
$\bigcirc 9^{\circ}$) Rinsing	DI water – 3 min minimum	
$ ightarrow 10^{\circ}$) Bath C	$HCl + H_2O_2 + H_2O$ boiling - 5 min	
$ ightarrow 11^{\circ}$) Rinsing	DI water – 3 min minimum	
\bigcirc 12°) Drying	Spin dryer	

VI- GATE OXIDE




This dry Oxidation is performed in oven N° 2-1 following two steps:

Conditions				
⊂⊃ Process test-wafer 1 also, <u>but not test-wafer 2</u>				
Temperature	Duration	Flow rates		
⊂⊃ 1100°C	20 min	$O_2 = 2 l/min$		
⊂⊃ 1100°C	10 min	Ar = 2 l/min		

During this operation, continue to characterize the process (cf part XX "characterizations")

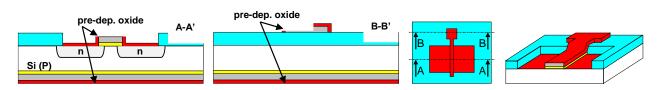
VII- POLYSILICON DEPOSIT



This is performed in the LPCVD (Low Pressure Chemical Vapor Deposition) reactor n°4-3:

Conditions					
\bigcirc Process also test-wafer 2	⊂⊃ Process also test-wafer 2, <u>but not test-wafer 1</u>				
Temperature	Duration	Flow rates	Pressure		
\bigcirc from 400°C to 585°C	20 min	$N_2 = 1 l/min$	1 Torr		
⊂⊃ 585°C	21 min	$SiH_4 = 50 cc/min$	250 mTorr		
\bigcirc from 585°C to 400°C	20 min	$N_2 = 1$ l/min (cycles de purge/vide)	1 Torr		

VIII- PHOTOLITHOGRAPHY n° 2: "POLYSILICON ETCHING"


S	upervisor's visa for the continuation of Operations	
Operations	Conditions	•
$\Box 1^{\circ}$) Drying	Hot plate $120^{\circ}C - 2 \min$	
\bigcirc 2°) HMDS deposit (Adhesion promoter)	Spin coater 4000 rpm - 30 s	
\bigcirc 3°) Positive photoresist deposit	Resist Shipley S1813 Spin coater 4000 rpm - 30 s	
$\subset 4^{\circ}$) 1st annealing	Hot plate 100°C - 60 s.	
$\bigcirc 5^{\circ}$) Alignment - Insolation	Mask $n^{\circ}2 - 5$ s	
$\subset 6^{\circ}$) Development	Bath at 20 °C - 25 s	
\bigcirc 7°) Rinsing	DI water	
$\bigcirc 8^{\circ}$) Drying	Spin dryer	
\bigcirc 9°) Observation	Optical microscope	
\bigcirc 10°) 2nd annealing	Hot plate 120° C - 45 s	
⊂⊃ 11°) POLYSILICON ETCHING (components side)	REACTIVE ION ETCHING Flow rate SF ₆ : 30 cc/min. Pressure : 0,02 mbar Power RF : 50 W	
$\subset 12^{\circ}$) Do not remove the photoresist		
$\subset 13^{\circ}$) Observation	Optical microscope	
⊂⊃ Process test-wafer 1	Operation n°2 (§ XIX)	
⊂⊃ 14°) SiO2 etching	BOE HF: time duration given by test-wafer1	
\bigcirc 15°) Rinsing	DI water	
\bigcirc 16°) Drying	Spin dryer	
\bigcirc 17°) Observation	Optical microscope	
\bigcirc 18°) Resist dissolution	Acetone + DI water	

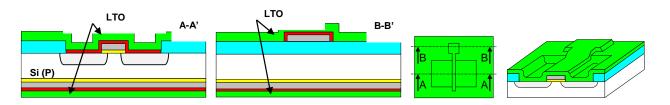
Source and drain are opened for diffusion so the channel length "L" will be set under the gate.

IX- ORGANIC DECONTAMINATION

Operations	Conditions
$\subset 1^{\circ}$) Cleaning	$H_2SO_4 + H_2O_2 - 2 min$
$\bigcirc 2^{\circ}$) Rinsing	DI water
$\subset 3^{\circ}$) Drying	Spin dryer

X- SOURCE ET DRAIN DIFFUSION (N type)

<u>1- PreDeposit :</u> This operation is performed following 3 steps in oven n°1-1

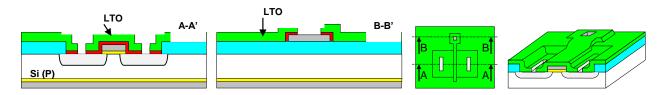

		Conditions
\square Process also test-wafer 1 and 2		
Temperature	Duration	Flow rates
⊂⊃ 1050°C	5 min	$N_2 = 2 l/min - O_2 = 0,1 l/min$
⊂⊃ 1050°C	10 min	$N_2 = 2 l/min - O_2 = 0,1 l/min - POCl_3 = 10 mg/min$
⊂⊃ 1050°C	6 min	$N_2 = 2 l/min - O_2 = 0,1 l/min$

<u>**2- Drive-in :**</u> This operation is performed in oven $n^{\circ}1-1$ following these conditions :

Temperature	Duration	Flow rates
⊂⊃ 1100°C	7 min	$N_2 = 1 l/min$

Supervisor's visa for the continuation of Operations	▼
$\subset \supset$ Diffusion oxyde e _d thickness measurement on test-wafer 1 - Operation n°3 (§ XIX)	
\bigcirc 4 probes measurement (Oxide etching and V/I)	

XI- SiO2 DEPOSIT L.T.O (Low Temperature Oxide)

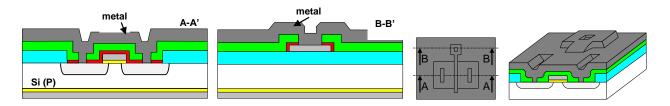

After the source and drain diffusion, an insulating capping layer of SiO₂ L.T.O. (low temperature oxide) is deposited. This operation is performed in oven LPCVD n°3-1 following the conditions:

Conditions			
⊂⊃ Process also test-wafer 2, but not test-wafer 1			
Temperature	Duration	Flow rates	Pressure
⊂⊃ 420°C	20 min	T° Stabilization + purge	
⊂⊃ 420°C	15 min	$SiH_4 = 30 \text{ cc/min} - O_2 = 60 \text{ cc/min}$	200 mTorr
⊂⊃ 420°C	10 min	$N_2 = 1$ l/min (purge/vacuum)	1 Torr

 \square Depth measurement of diffused junction on test-wafer 1 - **Operation n°3 (§ XIX)** \square Thickness measurement {oxide diffusion $e_d + LTO$ oxide e_n } on test-wafer 2 using profilemeter - **Operation n°4 (§ XIX)**

 \bigcirc Deduce LTO oxide e_n thickness

XII- PHOTOLITHOGRAPHY n° 3 : "CONTACTS OPENING"



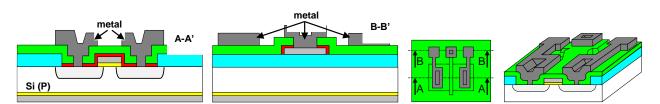
	Supervisor's visa for the continuation of Operations	▼
Operations	Conditions	
\bigcirc 1°) Drying	Hot plate 120°C – 2 min	
⊂⊃ 2°) HMDS deposit (Adhesion promoter)	Spin coater 4000 rpm - 30 s	
$\subset 3^{\circ}$) Deposit resist	Resist Shipley S1813 Spin coater 4000 rpm - 30 s	
$\subset \supset 4^{\circ}$) 1st annealing	Hot plate $100^{\circ}C - 60 s$	
\bigcirc 5°) Alignment - Insolation	Mask $n^{\circ}3 - 5 s$	
$ ightarrow 6^{\circ}$) Development	Bath à 20 °C - 35 s	
$ ightarrow 7^{\circ}$) Rinsing	DI water	
	Spin dryer	
\bigcirc 9°) Observation	Optical microscope	
$ ightarrow 10^{\circ}$) 2nd annealing	Hot plate 120° C - 45 s	
$\subset 11^{\circ}$) SiO ₂ etching	BOE HF : time duration given by test-wafer2	
\bigcirc 12°) Rinsing	DI water	
\bigcirc 13°) Drying	Spin dryer	
$\subset 14^{\circ}$) Observation	Optical microscope	

$ ightarrow 15^{\circ}$) Resist dissolution	Acetone	
$\subset \supset 16^{\circ}$) Rinsing	DI water	
$ ightarrow 17^{\circ}$) Drying	Spin dryer	
\bigcirc 18°) Bring the components wafer to AIME staff for mounting on the sample holder		

⊃ POLYSILICON thickness measurement on test-wafer 2 - Operation n°5 (§ XIX)

XIII- METALLIZATION

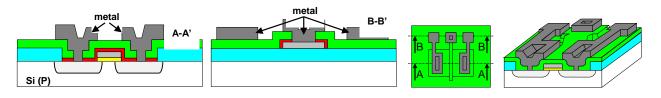
A 300 nm thick Aluminium layer is deposited on the wafer in this step.


Either by RF magnetron sputtering	⊂⊃ Deposit	Pressure before Deposit = Pressure during Deposit = Power RF =	10 ⁻⁷ mbar 2.10 ⁻³ mbar 150 W
		Target-substrate distance = Duration of the Deposit =	90 mm 15 min

<u>OR</u>

by thermal evaporation

⊂⊃ Degassing	T(subst.) = Duration =	°C min
⊂⊃ Deposit	Pressure before Deposit = Pressure during Deposit =	mbar mbar


PHOTOLITHOGRAPHY n° 4 : "METAL ETCHING" XIV-

Supervisor's visa for the continuation of Operations		
Operations	Conditions	
$\bigcirc 0^{\circ}$) Aluminum etching bath homogenization.	Switch on the ultrasonic cleaner containing the Al etching bath.	

$\subset 1^{\circ}$) Drying	Hot plate 120°C – 2 min	
$\bigcirc 2^{\circ}$) Resist deposit	Resist Shipley S1813 Spin coater 4000 rpm - 30 s	
Si	upervisor's visa for the continuation of Operations	▼
\bigcirc 3°) 1st annealing	Hot plate $100^{\circ}C - 60 s$	
$\bigcirc 4^{\circ}$) Alignment - Insolation	Mask $n^{\circ}4 - 5$ s	
$\bigcirc 5^{\circ}$) Development	Bath à 20 °C - 25 s	
$\subset 5^{\circ}$) Rinsing	DI water	
\bigcirc 7°) Drying	Spin dryer	
$ ightarrow 8^{\circ}$) Observation	Optical microscope	
$\bigcirc 9^{\circ}$) 2nd annealing	Hot plate 120° C - 45 s	
$ ightarrow 10^\circ$) Bath of Al etching	Stop the ultrasonic cleaner, and take out the Al etching bath	
⊂⊃ 11°) Al ETCHING	Al etching bath (40vol. H ₃ PO ₄ + 7vol. HNO ₃ + 7vol. H ₂ O) using final control with naked eye + 30 s of supplementary etching	
$\subset \supset 12^{\circ}$) Rinsing	DI water	
ightarrow 13°) Drying	Spin dryer	
$\subset 14^{\circ}$) Observation	Optical microscope	

This photolithography is followed by the oxide etching of the backside of the components wafer.

Supervisor's visa for the continuation of Operations		
\bigcirc 15°) Front side protection	UV film	
⊂⊃ 16°) POLYSILICON ETCHING backside	POLYSILICON etching bath (1vol. HF + 71vol.HNO ₃ + 28vol.H ₂ O) using final control with naked eye : homogeneous grey color in the bath	
$\subset 17^{\circ}$) De-oxidation backside	BOE HF (attaque SiO ₂ grille) using final control with naked eye checking the hydrophobicity of the backside	
\bigcirc 18°) Rinsing	DI water	
\bigcirc 19°) Drying	Spin dryer	
$\bigcirc 20^{\circ}$) UV film glue degradation	UV Light– 5 min	
\bigcirc 21°) Cleaning resist (2 faces)	Acetone	

\bigcirc 22°) Rinsing	DI water
\bigcirc 23°) Drying	Spin dryer

XV- METAL ANNEALING

This Operation is carried out in oven n ° 3-2 according to the conditions:

Temperature	Duration	Flow rates
⊂⊃ 400°C	20 min	$N_2 + H_2$ (5%)= 1 l/min

⊂⊃ Aluminum thickness measurement on "components" wafer using the profilemeter

 \subset Fill in the 1st part of the results sheet before the wafer probing test

XVI- WAFER PROBING

 \bigcirc Quickly map the wafer to determine the region where the best components are located and select them.

XVII- ASSEMBLY

 \Box DICING of the "components" wafer with a diamond blade

 \bigcirc MOUNTING on base: welding by gold-silicon eutectic at T = 370 ° C

 \square MICRO-WELDING by ultrasound (wedge bonding of Al-Si wire 5%, \emptyset 25µm)

XVIII-ELECTRICAL TEST

See "characterization" pages

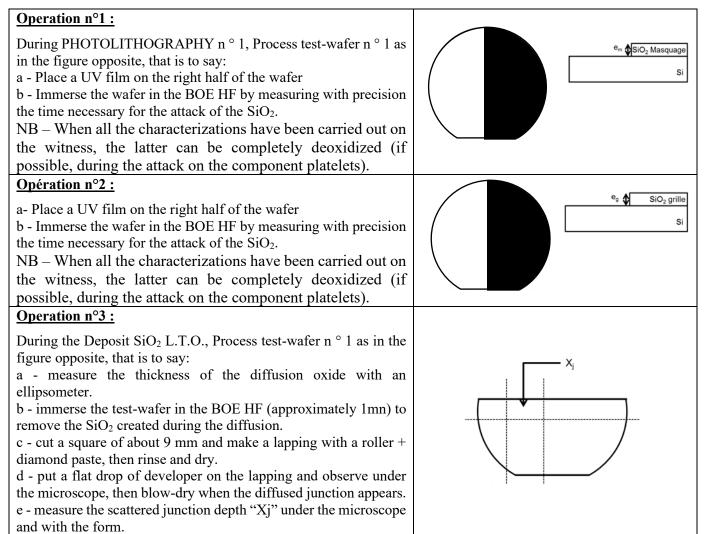
1°) - Measurement I(V) :

 \subset Trace the I_D (V_{DS}) characteristics of a long channel transistor

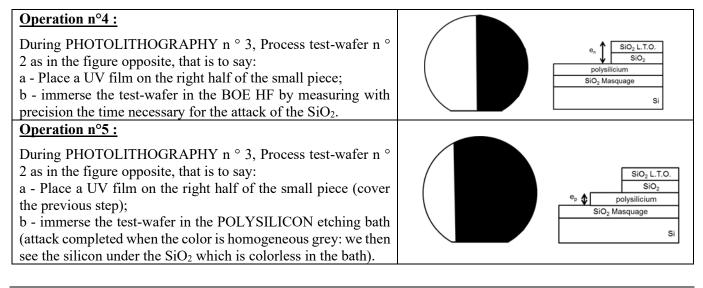
 \subset Trace the I_D (V_{GS}) characteristics of a long channel transistor

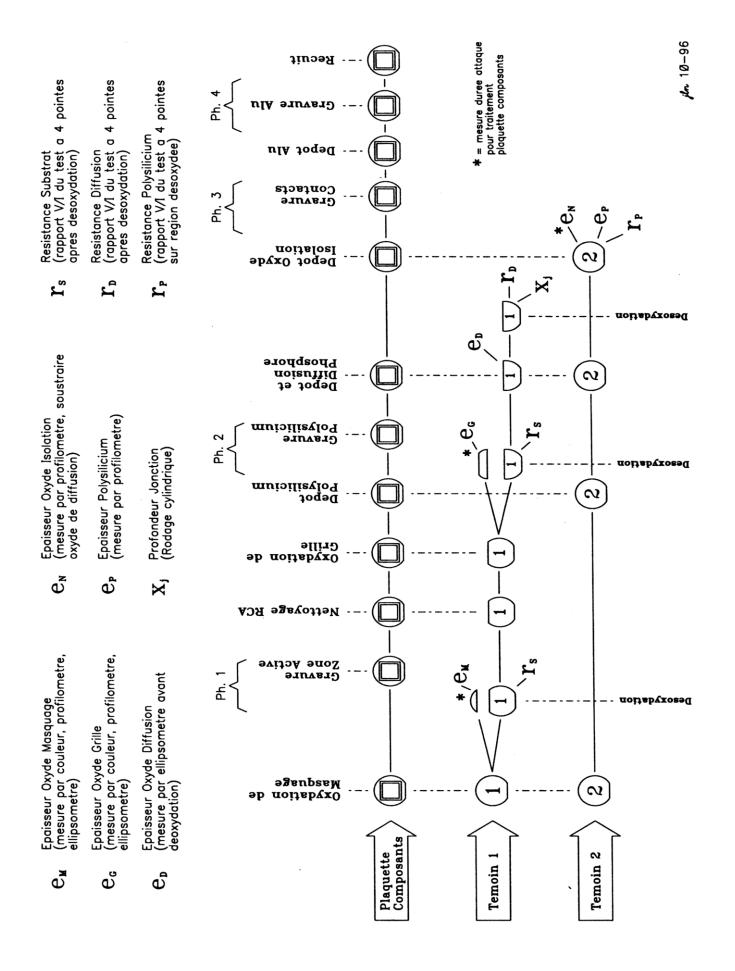
 \square Trace the I_D (V_{DS}) characteristics of a short channel transistor

 \Box Trace the I_D (V_{GS}) characteristics of a short channel transistor


 \subset Plot the characteristic I (V) of the diode

2°) - Measurement C(V) :


 $\subset \supset$ Plot the characteristic C = f (V) of the MOS capacitance


XIX- OPERATIONS ON THE TEST WAFER

TEST WAFER 1:

TEST WAFER 2 :

XX- CHARACTERIZATIONS

I- SUBSTRATE CHARACTERIZATION:

At the start of the process, we measure:	We deduce:	
- the four points measurement : $V/I = $ Ω	$\rightarrow R_{as} =$	Ω
- the thickness of the slices: $e_s = \\mu m$	$\rightarrow \rho_s =$	<u>Ω</u> .cm
	\rightarrow N _A =	at/cm ³

II - MEASUREMENTS OF OXIDE THICKNESSES:

a- Masking oxide after Operation II	$e_m = \ \mu m$
b- Gate oxide after Operation VI	$e_g = \ \mu m$
c- Diffusion oxide after Operation X	$e_d = \{\mu m}$
d- L.T.O. after Operation XI $e_n =$	<u></u> μm

III- CHARACTERIZATION OF THE DIFFUSION:

After step X (diffusion of the substrate), Measurements of :

V/I =	Ω	\rightarrow	$R_{nd} = $	Ω
X _j =	μm	\rightarrow	$\rho_d =$	Ω.cm
		\rightarrow	C _s =	at /cm3

IV- CHARACTERIZATION OF THE DOPED POLYSILICON LAYER:

After step X (diffusion of the substrate), Measures of :

V/I =	Ω	\rightarrow	R _p =	Ω
e _p =	_μm	\rightarrow	$\rho_p =$	_Ω.cm

V-ELECTRICAL TESTS:

The list of measurements mentioned below is given by way of example to allow either comparisons with theoretical values or the determination of new technological parameters.

1 - For each of the transistors of a chip:

 \Box Trace the network of characteristics I_D (V_{DS}) and I_D (V_{GS}) and deduce

- • g_m transconductance
- • the on-state resistance R_{on} (for $V_{GS} = 5 \text{ V}$)¹

 \bigcirc We can also evaluate:

- Current I_{DS0} at $V_{GS}=0$
- the threshold voltage V_T
- the breakdown voltage V_B

To be able to do the calculations, it is necessary to know the geometric dimensions of the components produced:

Transistor MOS "long channel"

 $L = __{\mu m} - W = __{\mu m}$

 $g_m = \dots mS$ $R_{on} = \dots \Omega$

 $V_T = V \quad V_B = V \quad I_{DS0} = \mu A$

Transistor MOS "short channel"			
L = µm - $W = $ µm			
$g_m = \dots mS$ $R_{on} = \dots \Omega$			2
$V_T = V V_B = V I_{DS0} = \mu $			μA

<u>2 – For the MOS capacitor:</u>

 $\subset \supset$ Draw the curve C (V) in high frequencies and deduce from it C_{ox}, C_{dep}, V_T et Q_{SS} :

MOS Capacitor :	$S = cm^2$
$C_{ox} = \pF$	$e_{ox} = \dots \mu m$
$C_{dep} = \pF$	
V _T =V	$N_{ox} = charges.cm^{-2}$

¹ The experimental value R_{on} is obtained by measuring the slope of the characteristic $I_D(V_{DS})$ à V_{GS} = constant in the region where the current increases linearly with the voltage.

XXI-MEASUREMENT OF JUNCTION DEPTHS

DEFINITION:

Xj is the distance counted from the silicon surface such that $C(Xj) = C_B$

C (x) corresponding to the doping profile of the diffused zone and C_B to that of the substrate.

PROCEDURE:

a- Mechanical digging of the sample by a cylinder of radius R coated with diamond paste to obtain an imprint with a depth greater than Xj.

b- Chemical revelation which colors the N zone and the P zone differently.

c- Observation under Optical microscope and measurement of quantities x and y (fig. 3).

CALCULATION OF XJ:

With the notations in the figure, the measured lengths x and y are such that:

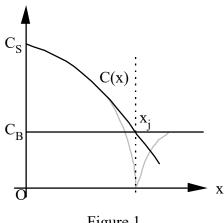
$$\begin{array}{l} x=a -b \\ y=a+b \end{array} \right\} \quad xy=a^2 -b^2 \\ \end{array}$$

In addition, simple geometric considerations lead to:

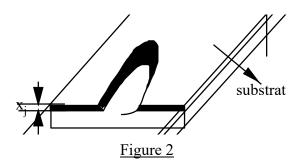
$$x_{j} = \{R^{2} - b^{2}\}^{\frac{1}{2}} - \{R^{2} - a^{2}\}^{\frac{1}{2}}$$

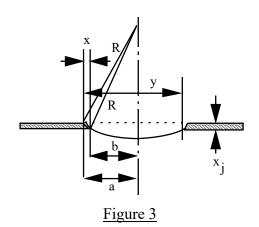
$$8 R \left\{ \left(1 - \frac{b^{2}}{2R^{2}}\right) - \left(1 - \frac{a^{2}}{2R^{2}}\right) \right\} = \frac{xy}{2R}$$

$$= \frac{xy}{2R}$$

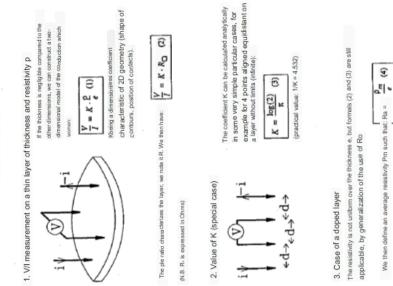

Taking into account the radius of the cylinder R = 1.25 cm and the magnification of the microscope, we have:

objective X 3,2 1 division of Vernier screw $\rightarrow 1 \ \mu m$ and


$$x_{j} (\mu m) = 39.9 . 10^{-6} x_{(div)} . y_{(div)}$$


objective X 5 1 division of Vernier screw $\rightarrow 0,6$ µm and

$$x_{j} (\mu m) = 14,40 . 10^{-6} x_{(div)} . y_{(div)}$$



Resistance of a conductive track of length whoed): Let and width W (a parallel

where Let W characterizes the design of the $R = \rho \cdot \frac{L}{S} = \rho \cdot \frac{L}{eW} = \frac{L}{W} \cdot R_{\mathbf{Q}}$

ନ

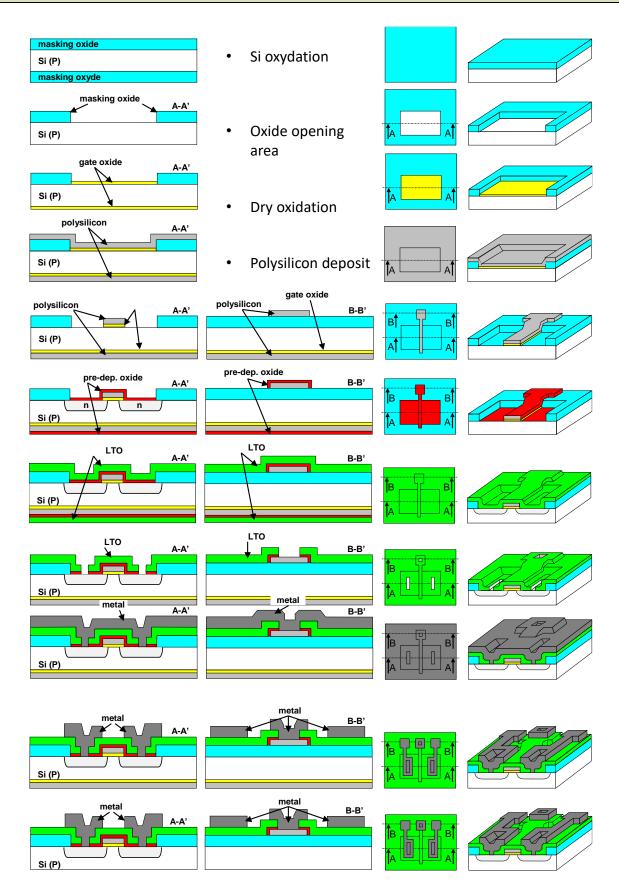
masks while R characterizes the

technology. The L/N ratio can be considered as a "number of squares", hence the name Ro: ssistance per square".

5. Case of significant thickness

If the thickness of the layer is not negligible but still reasonably small, formulas (2) and (3) can be applied by replacing K by a corrected K coefficient, a function of the ratio between the thickness and the other dimensions.

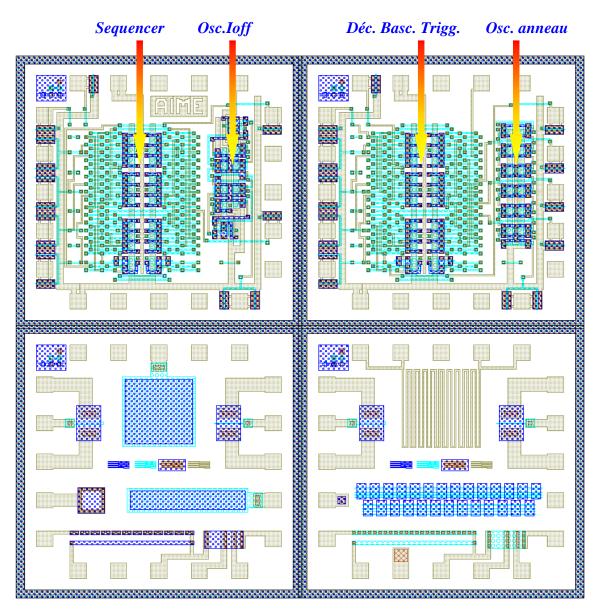
In the case of the 4 equidistant points of distance d, the correction is negligible as long as:



- perform a V/I measurement not too close to the edges of the sample Practical method for measuring 4 points:
 - int in Ohms express the .
- multiply by 4.532 to obtain R, note this result (always in Ohms) .
- correction is not (the distance between points being 1.59 mm, the thick express the thickness of the layer in cm.
- multiply Ropar e to obtain the resistivity for Pm note this result (in
 - Ohm.cm) use an abacus to deduce the dopant concentration (after possibly calculation of conductivity in Chim¹.cm²¹). .
 - SiBL ATTENTION: it is not the same chart depending on whether the dop deposited polysilicon) or not (diffused or implanted layer).

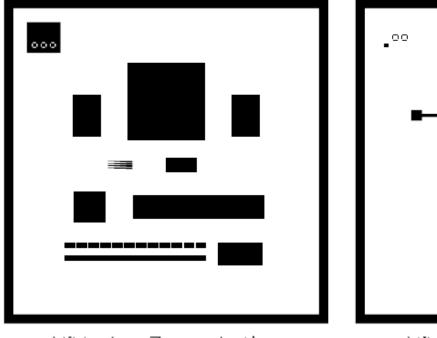
ation can be deduced at the surface

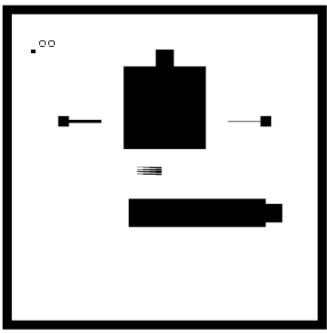
If the dopant distribution law is known, Pla concent and for different depths (see charts).


XXIII-SECTIONAL VIEWS OF THE DIFFERENT STAGES OF THE PROCESS

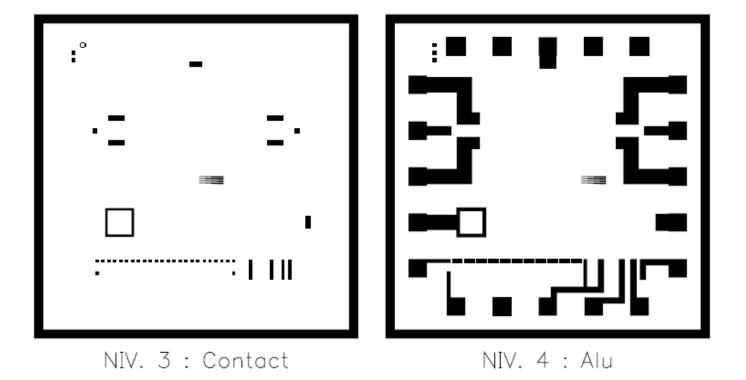
XXIV-SET OF MASKS DTC4R

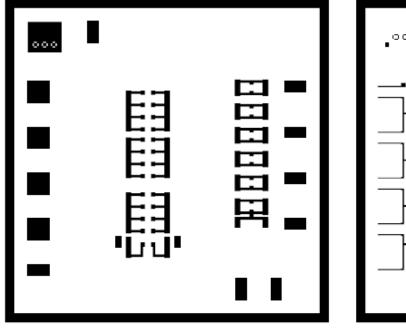
CHIP C3

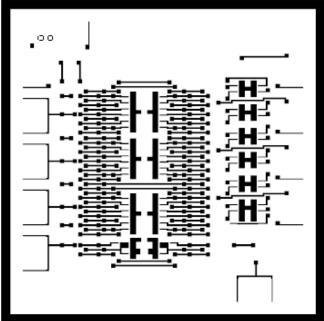

CHIP C4

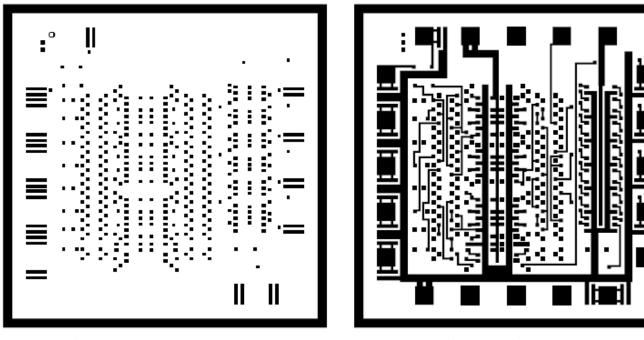

CHIP C1

CHIP C2


DTC4R : CHIP C1

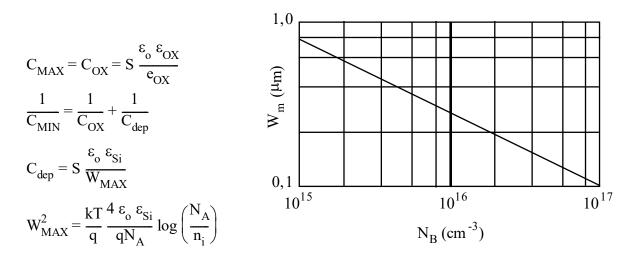

NIV. 1 : Zone Active


NIV. 2 : Polysilicum


DTC4R : CHIP C4

NIV. 1 : Zone Active

NIV. 2 : Polysilicum



NIV. 3 : Contact

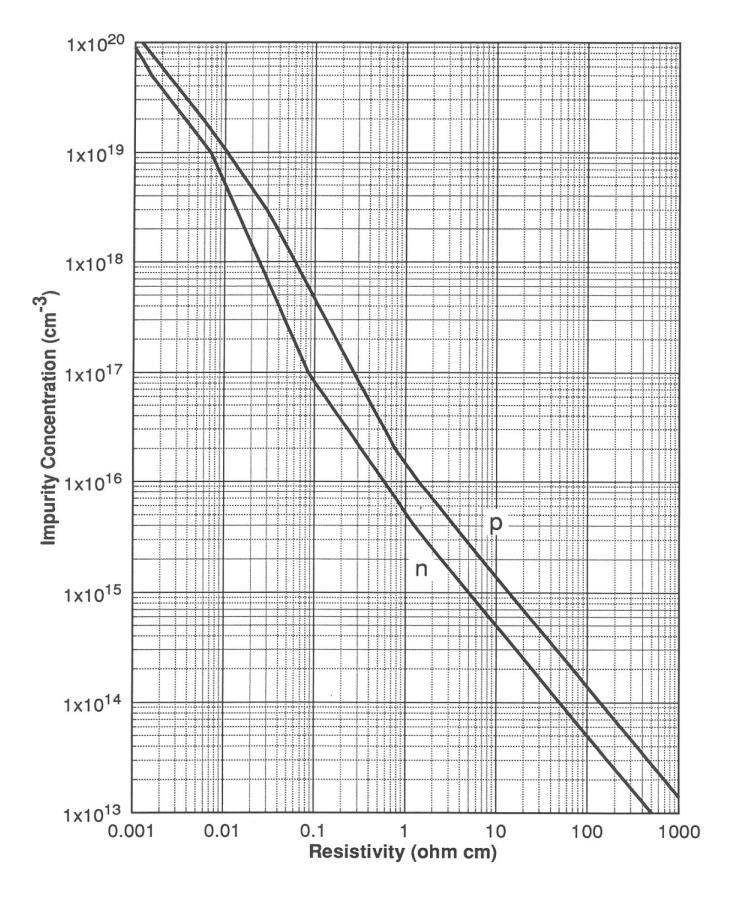
XXV- FORMS FOR ELECTRICAL TESTS

I- MOS CAPACITOR (Substrate P, High frequency Measurement (1 MHz))

II- TRANSCONDUCTANCE OF A MOS TRANSISTOR (saturated regime) $Z = \frac{\varepsilon_0 \varepsilon_{OX}}{\varepsilon_0 \varepsilon_{OX}} = \frac{\varepsilon_0 \varepsilon_{OX}}{\varepsilon_0 \varepsilon_{OX}}$

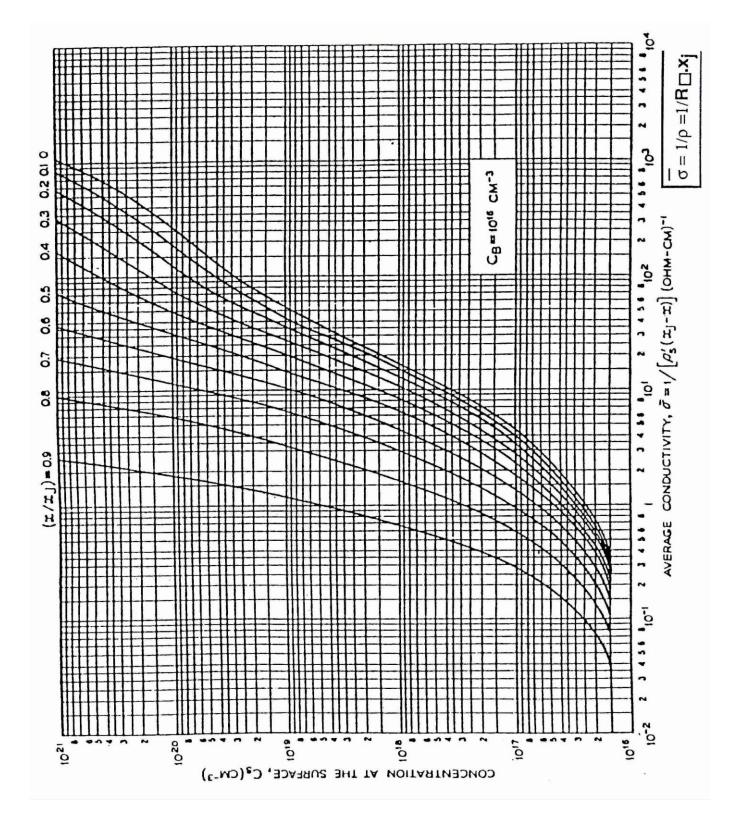
$$g_{\rm m} = \frac{Z}{L} \mu_{\rm n} \frac{e_{\rm o} e_{\rm OX}}{e_{\rm OX}} (V_{\rm G} - V_{\rm T}) \longrightarrow Z \frac{e_{\rm o} e_{\rm OX}}{e_{\rm OX}} v_{\rm s}$$

III- THRESHOLD VOLTAGE (channel N)


$$V_{T mes} = V_{T id} - \frac{Q_{SS}}{C_{OX}} \text{ ou } N_{SS} = (V_{T mes} - V_{T id}) \frac{C_{OX}}{q S} (cm^{-2})$$

et $V_{T id} = \Phi_{ms} + 2 \Phi_{F} + \sqrt{2 \Phi_{B} \Phi_{F}}$
avec $\Phi_{B} = 2 N_{A} \frac{e_{OX}^{2}}{\varepsilon_{o} \varepsilon_{OX}} \frac{\varepsilon_{Si}}{\varepsilon_{OX}} \Phi_{F} = \frac{kT}{q} \log \frac{N_{A}}{n_{i}}$
 $\Phi_{ms} = \Phi_{m} - \left(X_{si} + \frac{Eg}{2q} + \Phi_{F}\right)$

IV- SOME NUMERICAL VALUES (Si, T = 300 °K)


$$U_{T} = \frac{kT}{q} = 0,0259 \text{ V} \quad ; \quad \frac{E_{g}}{2q} = 0,56 \text{ V} \quad ; \quad n_{i} = 1,45 \cdot 10^{10} \text{ cm}^{-3}$$

$$\varepsilon_{Si} = 11,9 \quad ; \quad \varepsilon_{OX} = 3,9 \quad ; \quad \varepsilon_{o} = 8,85 \cdot 10^{-14} \text{ F.cm}^{-1} \quad ; \quad v_{s} = 10^{7} \text{ cm.s}^{-1}$$

Pour une grille en Al : $\Phi_{m} - x_{Si} = -0,11 \text{ V}$

V- SILICON DOPING

Version 2021

Theoretical calculation of the threshold voltage V, of the MOS

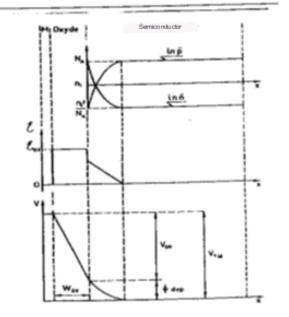
Notations

- Wo and Wsi work on grid output and the S, respectively.
- $\phi_{m} = \frac{Wo-Ws}{q}$ equivalent voltage of the output work difference
- dep: tension supported by the depopulated zone of thickness Wdep max
- AVox: voltage supported by the gate oxide at threshold.
- Qss: charge in C/cm² in the oxide (negative charge in the channel)
- Nss = Q_{ss} equivalent in atoms/cm² q
- eox- gate oxide thickness
- Cox = Eox/eox

Capacity of gate oxide per unit area

□ threshold voltage V,VT + V must be >0 in the NMOS

VFB: negative flat band voltage


$$V_{PB} = \frac{W_{c} - W_{s_{i}}}{q} - \frac{Q_{ss}}{C_{ox}} < 0$$

Ideal case

m0 and Qss-0

VTid AVox+dp>0 in NMOS Pop-2UT In NA n

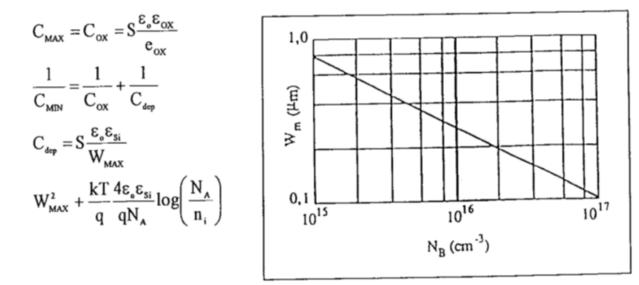
$$\Delta V_{ox} = \frac{e_{ox}}{\epsilon_{ox}} \sqrt{2q\epsilon_{si}N_{A}\varphi_{dep}}$$

About ϕ_{ms}

The following chart makes it possible to determine the difference in output work between ga and Si according to the type of substrate (N or P) and according to its doping and for variou of gates (Poly SN, Poly S.P' or Al).

Ex : substrat P. N₄=10¹⁶. Grille N⁺Si⇒oms≅-0,8V

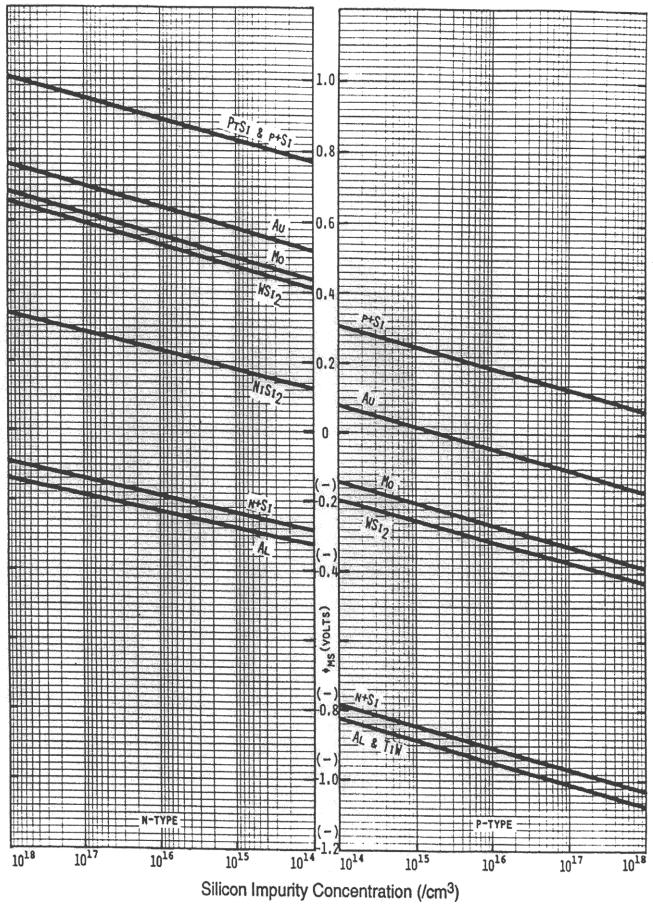
Dielectric data


 ε_{OX} =3,9 ε_{0} ε_{0} =8,85.10⁻¹⁴F/cm ε_{Si} =11,9 ε_{0}

Data S, at 300°K: intrinsic density ni=1010 cm-3

band gap v
$$Eg=1,12eV$$

thermodynamic voltage $U_{T}=\frac{kT}{q}=26mV$


11

MOS capacity (Substrate P, High frequency measurements (1 MHZ))

III Transconductance of a MOS transistor (saturated mode)

$$g_{m} = \frac{Z}{L} \mu_{m} \frac{\varepsilon_{o} \varepsilon_{ox}}{e_{ox}} (V_{G} - V_{T}) \longrightarrow Z \frac{\varepsilon_{o} \varepsilon_{ox}}{e_{ox}} v_{s}$$

ΦMS versus Silicon Doping for Various Gate Electrodes